মঙ্গলবার, ২৮ জানুয়ারী, ২০১৪

Truncated Tetrahedral Number

A figurate number constructed by taking the (3n-2)th tetrahedral number and removing the (n-1)th tetrahedral number from each of the four corners,
Ttet_n=Te_(3n-3)-4Te_(n-1)
(1)
=1/6n(23n^2-27n+10).
(2)
The first few are 1, 16, 68, 180, 375, ... (Sloane's A005906). The generating function for the truncated tetrahedral numbers is
 (x(10x^2+12x+1))/((x-1)^4)=x+16x^2+68x^3+180x^4+....                                                                   (3)

Ref: mathworld.wolfram.com

Gnomonic Number


GnomonicNumber
A figurate number of the form g_n=2n-1 giving the area of the square gnomon obtained by removing a square of side n-1 from a square of side n,
g_n=n^2-(n-1)^2
(1)
=2n-1.
(2)
The gnomonic numbers are therefore equivalent to the odd numbers, and the first few are 1, 3, 5, 7, 9, 11, ... (Sloane's A005408). The generating function for the gnomonic numbers is
 (x(1+x))/((x-1)^2)=x+3x^2+5x^3+7x^4+....

Ref: mathworld.wolfram.com
(3)

Decagonal Number

DecagonalNumber
A figurate number of the form 4n^2-3n. The first few are 1, 10, 27, 52, 85, ... (Sloane's A001107). The generating function giving the decagonal numbers is
 (x(7x+1))/((1-x)^3)=x+10x^2+27x^3+52x^4+....
The first few odd decagonal numbers are 1, 27, 85, 175, 297, ... (Sloane's A028993), and the first few even decagonal numbers are 10, 52, 126, 232, 370, 540, ... (Sloane's A028994).

Ref: mathworld.wolfram.com