শনিবার, ১৮ জানুয়ারী, ২০১৪

Demlo Number

The initially palindromic numbers 1, 121, 12321, 1234321, 123454321, ... (Sloane's A002477). For the first through ninth terms, the sequence is given by the generating function
 -(10x+1)/((x-1)(10x-1)(100x-1))=1+121x+12321x^2+1234321x^3+...
(1)
(Plouffe 1992, Sloane and Plouffe 1995).
The definition of this sequence is slightly ambiguous from the tenth term on, but the most common convention follows from the following observation. The sequences of consecutive and reverse digits c_n and r_n, respectively, are given by
c_n=1/(81)(10^(n+1)-9n-10)
(2)
r_n=1/(81)(9·10^nn-10^n+1)
(3)
for n<=9, so the first few Demlo numbers are given by
D_n=10^(n-1)c_n+r_(n-1)
(4)
=1/(81)(10^n-1)^2.
(5)
But, amazingly, this is just the square of the nth repunit R_n, i.e.,
 D_n=R_n^2
(6)
for n<=9, and the squares of the first few repunits are precisely the Demlo numbers: 1^2=111^2=121111^2=12321, ... (Sloane's A002275 and A002477). It is therefore natural to use (6) as the definition for Demlo numbers D_n with n>=10, giving 1, 121, ..., 12345678987654321, 1234567900987654321, 123456790120987654321, ....
DemloNumbersConstruction
The equality D_n=R_n^2 for n<=9 also follows immediately from schoolbook multiplication, as illustrated above. This follows from the algebraic identity
 D_n=sum_(k=0)^(n-1)10^kR_n=R_nsum_(k=0)^(n-1)10^k=R_n^2.
(7)
The sums of digits of the Demlo numbers for n<=9 are given by
 sum_(k=1)^nk+(k-1)=sum_(k=1)^n(2k-1)=n^2.
(8)
More generally, for n=1, 2, ..., the sums of digits are 1, 4, 9, 16, 25, 36, 49, 64, 81, 82, 85, 90, 97, 106, ... (Sloane's A080151). The values of n for which these are square are 1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 51, 66, 81, ... (Sloane's A080161), corresponding to the Demlo numbers 1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 12345679012345679012345679012345678987654320987654320987654320987654321, ... (Sloane's A080162).

Ref: mathworld.wolfram.com

0 মন্তব্য(গুলি):

একটি মন্তব্য পোস্ট করুন