There are different types of algorithm and they have complexities. These complexities are typed by there categories ---------------
Searching
Sorting
Algorithm | Data Structure | Time Complexity | Worst Case Auxiliary Space Complexity |
| | Best | Average | Worst | Worst |
Quicksort | Array | O(n log(n)) | O(n log(n)) | O(n^2) | O(n) |
Mergesort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(n) |
Heapsort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(1) |
Bubble Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) |
Insertion Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) |
Select Sort | Array | O(n^2) | O(n^2) | O(n^2) | O(1) |
Bucket Sort | Array | O(n+k) | O(n+k) | O(n^2) | O(nk) |
Radix Sort | Array | O(nk) | O(nk) | O(nk) | O(n+k) |
Data Structures
Data Structure | Time Complexity | Space Complexity |
| Average | Worst | Worst |
| Indexing | Search | Insertion | Deletion | Indexing | Search | Insertion | Deletion | |
Basic Array | O(1) | O(n) | - | - | O(1) | O(n) | - | - | O(n) |
Dynamic Array | O(1) | O(n) | O(n) | O(n) | O(1) | O(n) | O(n) | O(n) | O(n) |
Singly-Linked List | O(n) | O(n) | O(1) | O(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Doubly-Linked List | O(n) | O(n) | O(1) | O(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Skip List | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n log(n)) |
Hash Table | - | O(1) | O(1) | O(1) | - | O(n) | O(n) | O(n) | O(n) |
Binary Search Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n) |
Cartresian Tree | - | O(log(n)) | O(log(n)) | O(log(n)) | - | O(n) | O(n) | O(n) | O(n) |
B-Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Red-Black Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Splay Tree | - | O(log(n)) | O(log(n)) | O(log(n)) | - | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
AVL Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Heaps
Graphs
Node / Edge Management | Storage | Add Vertex | Add Edge | Remove Vertex | Remove Edge | Query |
Adjacency list | O(|V|+|E|) | O(1) | O(1) | O(|V| + |E|) | O(|E|) | O(|V|) |
Incidence list | O(|V|+|E|) | O(1) | O(1) | O(|E|) | O(|E|) | O(|E|) |
Adjacency matrix | O(|V|^2) | O(|V|^2) | O(1) | O(|V|^2) | O(1) | O(1) |
Incidence matrix | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|E|) |
Notation for asymptotic growth
letter | bound | growth |
(theta) Θ | upper and lower, tight[1] | equal[2] |
(big-oh) O | upper, tightness unknown | less than or equal[3] |
(small-oh) o | upper, not tight | less than |
(big omega) Ω | lower, tightness unknown | greater than or equal |
(small omega) ω | lower, not tight | greater than |
In short, if algorithm is __ then its performance is __
algorithm | performance |
o(n) | < n |
O(n) | ≤ n |
Θ(n) | = n |
Ω(n) | ≥ n |
ω(n) | > n |
Big-O Complexity Chart
This interactive chart, created by our friends over at MeteorCharts , shows the number of operations (y axis) required to obtain a result as the number of elements (x axis) increase. O(n!) is the worst complexity which requires 720 operations for just 6 elements, while O(1) is the best complexity, which only requires a constant number of operations for any number of elements.