শনিবার, ১৮ জানুয়ারী, ২০১৪

Pronic Number

A figurate number of the form P_n=2T_n=n(n+1), where T_n is the nth triangular number. The first few are 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, ... (Sloane's A002378). The generating function of the pronic numbers is
 (2x)/((1-x)^3)=2x+6x^2+12x^3+20x^4+....
Kausler (1805) was one of the first to tabulate pronic numbers, creating a list up to n=1000 (Dickson 2005, Vol. 1, p. 357; Vol. 2, p. 233).
Pronic numbers are also known as oblong or heteromecic numbers. However, "pronic" seems to be a misspelling of "promic" (from the Greek promekes, meaning rectangular, oblate, or oblong). However, no less an authority than Euler himself used the term "pronic," so attempting to "correct" it at this late date seems inadvisable.
McDaniel (1998ab) proved that the only pronic Fibonacci numbers are F_0=0 and F_3=2, and the only pronic Lucas number is L_0=2, rediscovering a result first published by Ming (1995).
The first few n for which P_n are palindromic are 1, 2, 16, 77, 538, 1621, ... (Sloane's A028336), and the first few palindromic numbers which are pronic are 2, 6, 272, 6006, 289982, ... (Sloane's A028337).

Ref: mathworld.wolfram.com

0 মন্তব্য(গুলি):

একটি মন্তব্য পোস্ট করুন