মঙ্গলবার, ৭ জানুয়ারী, ২০১৪

Prime Number Theorem

One of the supreme achievements of 19th-century mathematics was the prime number theorem, and it is worth a brief digression. To begin, designate the number of primes less than or equal to n by π(n). Thus π(10) = 4 because 2, 3, 5, and 7 are the four primes not exceeding 10. Similarly π(25) = 9 and π(100) = 25. Next, consider the proportion of numbers less than or equal to n that are prime—i.e., π (n)/n. Clearly π (10)/10 = 0.40, meaning that 40 percent of the numbers not exceeding 10 are prime. Other proportions are shown in the table.

A pattern is anything but clear, but the prime number theorem identifies one, at least approximately, and thereby provides a rule for the distribution of primes among the whole numbers. The theorem says that, for large n, the proportion π(n)/n is roughly 1/log n, where log n is the natural logarithm of n. This link between primes and logs is nothing short of extraordinary.


One of the first to perceive this was the young Gauss, whose examination of log tables and prime numbers suggested it to his fertile mind. Following Dirichlet’s exploitation of analytic techniques in number theory, Bernhard Riemann (1826–66) and Pafnuty Chebyshev (1821–94) made substantial progress before the prime number theorem was proved in 1896 by Jacques Hadamard (1865–1963) and Charles Jean de la Vallée-Poussin (1866–1962). This brought the 19th century to a triumphant close.

0 মন্তব্য(গুলি):

একটি মন্তব্য পোস্ট করুন